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The nematic ordering in semiflexible polymers with contour length L exceeding their persistence
length lp is described by a confinement of the polymers in a cylinder of radius reff much larger than the
radius rρ expected from the respective concentration of the solution. Large-scale molecular dynamics
simulations combined with density functional theory are used to locate the isotropic-nematic (I-N)
transition and to validate this cylindrical confinement. Anomalous fluctuations due to chain deflections
from neighboring chains in the nematic phase are proposed. Considering deflections as collective
excitations in the nematically ordered phase of semiflexible polymers elucidates the origins of short-
comings in the description of the I-N transition by existing theories.
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Introduction.—The stiffness of semiflexible macromo-
lecules in solutions and melts creates a tendency towards
liquid-crystalline order. However, neither the precise con-
ditions for the onset of nematic order nor the properties of
the phases are well understood [1–4]. Semiflexible poly-
mers behave like rigid rods on the persistence length scale
lp, yet like random coils [5] on larger scales if their contour
length L ≫ lp. In solutions of semiflexible polymers,
good solvent conditions prevail, the effective monomer-
monomer interactions being repulsive. The monomer
concentration ρ is then the control parameter for the onset
of order. Unlike solutions of rodlike particles (e.g., the
tobacco mosaic virus [6]), where translational and orienta-
tional entropy contributions compete [7], here also con-
formational degrees of freedom due to chain flexibility
matter. This hampers the understanding of such systems
[8–17]: even in the limit lp ≫ d (d being the effective
monomer diameter), the extension of Onsager’s theory [7]
for the isotropic-nematic (I-N) transition of thin long rods
is difficult [8–12]. Attempts [13–17] to go beyond this limit
have produced contradictory results: at the concentrations
of interest, it no longer suffices to deal with the interchain
interactions via the second virial coefficient only as [7–12]
for lp ≫ d. However, progress in the understanding of
these lyotropic crystalline polymers is highly desirable
in view of interesting applications (various liquid-crystal
devices [1,2], emerging new types of complex soft materi-
als such as nematic elastomers [18], nematic emulsions
[19], etc.), and in the context of biological matter (the stiff
cytoskeleton networks, neurofilaments within the axon
[20,21], intermediate filaments in cells [22,23], etc.).
In the present Letter, we take steps towards elucidating

this important problem by means of large-scale molecular
dynamics (MD) simulations, analyzing them in terms of the
“deflection length” concept. This length λ was originally

used to describe confinement of semiflexible chains in
cylindrical tubes [24–27]. We will explain why long-
wavelength collective fluctuations occur, causing large
deflections of the polymers from their director. The
observed reduction of the nematic order parameter S is
then stronger than predicted by density functional theory
(DFT), even when the DFT prediction for the location of
the transition is validated by MD [28].
Simulations of I-N transitions have been attempted

earlier [41–47], albeit only short chains and small simu-
lation boxes could be handled (we disregard thereby lattice
models [45–47] where the chains can order only in discrete
directions and no deflection length exists). In the present
work, both lp and the chain length N (i.e., the number
of beads in chains) are widely varied, 8 ≤ N ≤ 128, and
large systems (up to 500 000 beads) have been used. Our
work has become feasible by means of very efficient codes
[48,49] on graphical processing units (GPUs) [28].
Model.—We employ the standardmodel [50]where beads

interact along the chains with the spring potential UFENEðrÞ
[finitely extensible nonlinear elastic (FENE)] while any pair
of beads interacts with the repulsive part of the Lennard-
Jones (LJ) potential ULJðrÞ, r being the distance between
beads. In this model, the distance between the neighboring
beads along the chain is lb ¼ 0.970σ [hence, the contour
length L ¼ ðN − 1Þlb, with the LJ diameter σ ¼ d ¼ 1 and
the LJ energy ϵ ¼ 1, as well as temperature T ¼ 1] [28].
Chain stiffness is described by the bond bending potential
UbendðθijkÞ ¼ ϵb½1 − cosðθijkÞ� for j ¼ iþ 1, k ¼ jþ 1.
Here, θijk is the angle between the bond vector ~ai ¼
~rj − ~ri and ~aj ¼ ~rk − ~rj. The persistence length is then
simply [51] lp=lb ¼ −1= lnhcosðθijkÞi ¼ ϵb for ϵb ≥ 2.
The monomer concentration is ρ ¼ NN=L3

box, where N
is the number of chains, and Lbox is the linear dimension
of the cubic simulation box. System trajectories are
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computed with the velocity-Verlet algorithm, applying as
usual a Langevin [50] thermostat. Pressure P is computed
using the virial theorem, and the order parameter S is the
largest eigenvalue of the tensor Qαβ which describes the
average orientation of the unit vectors along bonds in
the system [52].
Figure 1(a) shows a typical configuration in the nematic

phase. Although there the value of S is large (S ≈ 0.9),
considerable bending of the wormlike chains is observed.
On the molecular scale, the character of this phase differs
considerably from a nematic formed by rodlike molecules.
Long-wavelength excitations (deflections of chain orienta-
tion around the common director) are clearly seen from
typical configurations of individual chains as the simulation
snapshots prove [Fig. 1(b)]. These observations suggest
a more comprehensive coarse-grained picture of nematic
order in solutions of semiflexible polymers [Fig. 1(c)] that
we explain below.

Equation of state and order parameter.—Typical data
for pressure [Fig. 2(a)] versus concentration reveal quali-
tative agreement between MD and DFT. Of course, the
latter cannot use the continuous potentials used by MD but
rather is based on extensions of a tangent hard-sphere chain
model [17,52], and different choices of the equation of state
within the DFT framework yield slightly different results
[28]. Thus, perfect quantitative agreement between the
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FIG. 1. (a) Snapshot of a system of semiflexible polymers with
length N ¼ 32, stiffness ϵb ¼ 100, at concentration ρ ¼ 0.6
(deep in the nematic phase). (b) Typical conformation of a
semiflexible polymer in the nematic phase (N ¼ 64, ϵb ¼ 16,
ρ ¼ 0.4). (c) Schematic description of nematic order: each chain
has its own cylindrical (bent) tube of diameter 2rρ defined such
that it contains only monomers from the considered chain. The
tube is placed inside a straight wider cylinder of diameter 2reff
(see text). The definition of the deflection length λ is indicated.
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FIG. 2. (a) Pressure vs concentration for the case N ¼ 32,
ϵb ¼ 32 according to MD (full dots) and two versions of density
functional theory, the first based on the Carnahan-Starling (CS)
equation of state (solid lines) [34] and the second, using the
generalized Flory Dimer (GFD) [39] equation of state (broken
lines) [28]. The I-N transition in the simulation is rounded
by finite-size effects. DFT predictions for I-N coexistence are
indicated by squares (DFT CS) and crosses (DFT GFD).
(b) Scaled volume fraction ρπlp=ð4dÞ at the transition plotted
versus L=lp according to MD, theory [12], and typical experi-
ments [53,54]. The shaded stripe indicates the I-N coexistence
region ρi < ρ < ρn, as predicted by Chen [12]. MD does not
resolve ρi, ρn, rather ρtr is the position of the maximum slope
of the S vs ρ curve (see Fig. 3). For the experiments, namely,
poly(hexyl isocyanate) (PHIC) in toluene [54] and poly(yne)-
platinum (PYP) in trichloroethylene [53] ρav ¼ ðρi þ ρnÞ=2 was
taken as the transition density. The numbers in the brackets in
the legend indicate d=lp.
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DFT prediction for the location of the I-N transition and
the simulation cannot be expected. Interestingly, Fig. 2(b)
reveals a similar trend as the Khokhlov-Semenov-Odijk-
Chen [8–12] theory, when we plot the volume fraction
ρtrπ=4 at the transition multiplied by lp=d versus L=lp.
However, unlike usually assumed [4,8–12,42], this does
not yield a universal master curve but rather a decrease of
ρtr (at fixed L=lp) with increasing ratio d=lp takes place.
In fact, this finding helps us understand the origin of
discrepancies between theories [8–17] and experiments
[4,53,54] where a fit of all systems to a universal master
curve was assumed [4,42].
However, most interesting is the qualitative discrep-

ancy between MD and DFT with respect to the density
dependence of the order parameter S (Fig. 3), whereby
the DFT result approaches saturation much faster than
according to MD; that is, DFT significantly overesti-
mates the degree of ordering in the nematic phase. We
attribute this fact to the neglect of long-wavelength
fluctuations in the nematic phase, reflecting the mean-
field character of the DFT. The situation is analogous to
the case of the molecular field approximation (MFA)
for an isotropic Heisenberg ferromagnet: the MFA also
does not allow for effects due to magnons. Both in this
case and at the I-N transition, a continuous symmetry is
broken, but for semiflexible polymers, the situation is
special since an additional length scale (the deflection
length) matters.
Deflection length and cylindrical confinement.—Unlike

nematic order of rigid rods, the local order parameter Si
along the contour of an individual chain is nonuniform
[Fig. 4(a)] and can be described by

S∞ − SðiÞ ∝ expð−ilb=λÞ; ð1Þ

with S∞ being the order parameter in the center of a chain
(for L → ∞), and λ can be taken as a definition of the
deflection length [10–12]. Alternatively, we can measure
the mean-square monomer displacement hð~ri;⊥ − ~rj;⊥Þ2i in
the direction perpendicular to the end-to-end vector ~rN − ~r1
as a function of the bead index [Fig. 4(b), inset]. In the
nematic phase, this displacement increases linearly with
s ¼ j − i and reaches a flat maximum (of height r2eff ) at
distance λ along the contour. The deflection length is
normally [24–27] defined for a semiflexible polymer
confined in a cylinder of radius reff .
Considering the initial growth of the mean-squared angle

with the distance s along the contour hθ2ðsÞi ¼ 2slb=lp,
and equating this to r2eff=λ

2 for slb ¼ λ, one concludes
that λ ¼ ðlpr2effÞ1=3 and 1−S≈3=2hθ2i≈3=2ðreff=lpÞ2=3.
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FIG. 3. Nematic order parameter S from MD (filled circles) vs
concentration ρ for N ¼ 32 and various choices of ϵb, as
indicated. Full curves denote corresponding predictions of
DFT CS [28]. I-N coexistence is indicated by diamonds and
broken straight lines (lever rule). Corresponding predictions from
Chen [12] are shown by squares and dotted lines.
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FIG. 4. (a) Local order parameter Si (referring to bond vector ~ai)
plotted vs i=N and averaged over all equivalent bonds in the
system for the case N ¼ 64 and several choices of N=ϵb, as
indicated. The left inset shows a semilog plot of S∞ − Si vs i so as
to demonstrate Eq. (1). From the slope, the deflection length λ is
extracted as λ=lp ¼ 2.36, 3.65, and 8.2 for ϵb ¼ 8, 16, and 32,
respectively. (b) Variation of the confinement radius reff with
concentration ρ for semiflexible chains with N ¼ 128 and two
choices of stiffness ϵb ¼ 64 and 128 computed from Eq. (2) and
from the maximum of hðri;⊥ − rj;⊥Þ2i. The inset shows the mean-
squared displacement of consecutive beads hðri;⊥ − rj;⊥Þ2i
perpendicular to the respective end-to-end vector ~Re averaged
over all chains in the nematic phase for ϵb ¼ 128 and twodensities.
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Since the average projection of each bond along the
cylinder axis is lbhcos θi ≈ lbð1 − hθ2i=2Þ, the reduction
of the mean-squared end-to-end distance becomes
1 − hR2

ei1=2=L ≈ hθ2i=2 ¼ ðreff=lpÞ2=3=2. These scaling
arguments can be made more precise to yield [25–27]
for L=lp ≫ 1,

1 − S ¼ 3

�
1 −

ffiffiffiffiffiffiffiffiffi
hR2

ei
p

L

�
¼ 0.51

�
2reff
lp

�
2=3

¼ 3
λ

lp
: ð2Þ

We now suggest that nematic order of semiflexible
polymers can be essentially understood in terms of cylin-
drical confinement as a collective effect of the neighboring
chains of the considered chain [Fig. 1(c)]. These cylinders
in Fig. 1(c) must not be confused with the tubes due to
entanglements in solutions of semiflexible polymers con-
trolling the viscoelastic dynamics in the isotropic phase
[55–58]. Figure 4(b) shows how both λ and reff can be
extracted from the data. Choosing different values of N and
ϵb, we can also test the left part of Eq. (2); see Fig. 5. For
the regime where Eq. (2) should hold, namely, L=lp ≫ 1
and hθ2i ≪ 1, i.e., 1 − S ≤ 0.2, we get very good agree-
ment with no adjustable parameters whatsoever. For
L=lp ≤ 1, the data display curvature and bend upwards
away from a straight line. This is expected, of course, since
for L=lp < 1, the end-to-end distance of such rather stiff
“flexible rods” cannot decrease much. Disordering of the
nematic phase then occurs predominantly due to misor-
ientation of the flexible rods relative to the director as a
whole. Remarkably, different choices of L and lp in the
representation of Fig. 5 yield a set of master curves
depending on the single parameter L=lp only. However,
different scaled concentrations ρlp=d for a given L=lp do

not coincide on the same point of the master curve but
differ systematically. Using the result 1 − S ¼ 3ðλ=lpÞ, we
obtain alternative estimates for λ. For the cases shown in
Fig. 3(a), we, thus, find for ϵb ¼ 8, 16, and 32 the values
λ ¼ 1.36, 2.14, and 4.7, respectively. These estimates are
systematically somewhat smaller than those extracted from
Fig. 4(a) via Eq. (1) but exhibit a similar trend.
This analysis in terms of cylindrical confinement does

not mean that the nearest neighbors of a chain enclose
it in a cylinder of radius reff [Fig. 1(c)], rather this
cylinder is shared by many chains. This is readily seen
when we compute a radius of a cylinder from ρ via
rρ ¼ ½N=ðπρhR2

ei1=2Þ�1=2, i.e., a cylinder containing the
monomers of one chain only (and solvent particles). For
concentrated solutions, rρ is comparable to σ, of course [see
Fig. 4(b)], while reff extracted from Eq. (2) is much larger
(it increases proportional to lp). This description implies
Fig. 1(c), i.e., each chain is confined in a tube of radius rρ,
but this tube as a whole is like a wormlike chain, making
excursions of order of reff on a length scale λ along the
cylinder axis. Since the cylinder of radius reff contains a
bundle of chains (which may be twisted around each other),
it is clear that the deflections of these chains sharing
one cylinder are coherent collective excitations, because
the tubes of radius rρ must be essentially space filling. Of
course, for a semidilute solution, rρ may exceed σ con-
siderably, and then the chains have additional bending
degrees of motion within their individual tubes, as indicated
qualitatively in Fig. 1(c).
Conclusions.—In summary, we have shown that the

nematic phase of semiflexible polymers exhibits collective
deflection modes on a length scale λ of amplitude reff
perpendicular to the director, if L=lp ≫ 1, and both λ and
reff can be directly predicted from the order parameter S
[Eq. (2)]. We feel that the picture of nematic order of
semiflexible polymers developed here has also important
implications for both linear and nonlinear elastic response of
such systems, and corresponding experiments testing our
ideas would be very welcome. So far, the deflection length
has only beenmeasured for a semiflexible chain in a nematic
solvent [59]. Note that in nematics formed from rigid rods,
each rod is confined in a cylinder of radius rρwhile the length
scales λ and reff do not exist. For the interpretation of the
experiments, the version of DFT that we have used and
validated here could beveryuseful, since it can beworkedout
for a much wider parameter range compared to MD. Our
study has clearly shown limitations of the previous theories
of the I-N transition of semiflexible polymers [see, e.g.,
Fig. 2(b)] and should provide a better understanding of
experiments. It would be very interesting to study the
corresponding static and dynamic collective structure fac-
tors, but this is beyond our scope here. It remains a challenge
to extend the analytic theories [8–12,26] to self-consistently
predict the length scales λ and reff from the molecular
parameters lp, d, and L and the polymer density.
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